
Don’t Pour Cereal into Coffee: Differentiable
Temporal Logic for Temporal Action Segmentation

Ziwei Xu†∗ Yogesh S Rawat§ Yongkang Wong† Mohan S Kankanhalli† Mubarak Shah§

† School of Computing, National University of Singapore
§ Center for Research in Computer Vision, University of Central Florida

{ziwei-xu,mohan}@comp.nus.edu.sg yongkang.wong@nus.edu.sg
{yogesh,shah}@crcv.ucf.edu

Abstract

We propose Differentiable Temporal Logic (DTL), a model-agnostic framework
that introduces temporal constraints to deep networks. DTL treats the outputs of a
network as a truth assignment of a temporal logic formula, and computes a temporal
logic loss reflecting the consistency between the output and the constraints. We
propose a comprehensive set of constraints, which are implicit in data annotations,
and incorporate them with deep networks via DTL. We evaluate the effectiveness of
DTL on the temporal action segmentation task and observe improved performance
and reduced logical errors in the output of different task models. Furthermore, we
provide an extensive analysis to visualize the desirable effects of DTL.

pour_coffee
pour_coffee
pour_coffee

pour_milk

pour_milk
pour_water pour_cereal

GT
w/o DTL
w/ DTL

Frames

Figure 1: A video of activity “coffee preparation”. The colored bars, from the top to the bottom, show
the ground truth (GT), the predictions from a baseline [15], and the predictions from the baseline
trained with DTL, respectively. Note that the baseline model erroneously predicts pour_cereal when
DTL solves this problem with an exclusivity constraint between pour_coffee and pour_cereal.

1 Introduction

Recent years have witnessed significant advances in video action analysis tasks such as action
recognition [29, 58], action detection [52], and temporal action segmentation [15, 1]. This can be
credited to the availability of large-scale datasets [50, 23] and the development of effective deep
visual backbones [4, 53, 17]. Although data-driven backbones can capture useful spatio-temporal
features, learning a large number of highly diverse temporal dependencies and correlations over
long time spans can be very challenging. In existing approaches, these temporal dependencies are
not explicit to the model: it is possible to provide framewise annotation during training, however,
temporal constraints like “event X has to occur after event Y” are still implicit in the annotations and
not explicitly enforced. Even though these constraints could be statistically learned from a large
amount of data, a pure vision model could still be confused by different actions with similar visual

∗This work was done when Ziwei Xu was visiting the Center for Research in Computer Vision.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

appearances. An example of this is shown in Fig. 1, where the model confuses pour_cereal with
pour_milk because both actions involve holding a carton.

In this paper, we propose a solution to this problem by employing temporal logic to apply declarative
temporal constraints to the output of deep networks. Linear Temporal Logic (LTL) [45], for example,
defines operators that describe necessities, possibilities, and dependencies of actions in a series of
actions. Checking a network’s output against those constraints (a.k.a. model checking) tells us if
the predicted actions are logically correct. Logical correctness can be used as an additional training
objective. According to prior works in the neuro-symbolic community [57, 55, 18], applying logic
constraints improves the performance of deep networks in tasks for graph data [57] and images [55]
by reducing logical errors in the output. Although one would anticipate similar benefits when using
the temporal logic for action analysis, most of the focus in literature is still on non-sequential data.

In this work, we focus on the temporal aspect and consider temporal constraints in videos. Inspired
by the foundational works in logic-based losses [57, 18], we propose a Differentiable Temporal Logic
(DTL) framework, which uses an extended definition of linear temporal logic to constrain the output
of action analysis models. At a high level, DTL treats the model output as a truth assignment of
variables in LTL formulae. A differentiable evaluator performs model checking on the outputs and
yields a satisfaction score, which measures the consistency between the constraints and the outputs.
As we optimize the satisfaction score through standard optimization methods, the constraints are
enforced on the deep network. Different from existing work [56], in DTL the relation between
formula evaluation and formula satisfaction is determined, which means that DTL is logically sound.
Moreover, we propose a comprehensive set of constraints covering both temporal and non-temporal
dependencies between actions, and show how they are represented using DTL. We evaluate DTL on
the challenging temporal action segmentation task, where modeling temporal dependencies between
actions is crucial. The efficacy of our method is shown by the improved performance of different task
models when constraints are enforced through DTL.

The contributions of this work are as follows:

• We present Differentiable Temporal Logic (DTL), a framework providing a model-agnostic
manner of introducing temporal logic constraints to deep networks (cf. Section 3.2).

• We propose DTL constraints to describe a wide range of relations between actions, which
can be automatically procured from dataset annotation (cf. Section 3.3).

• Experiments with different task models on the temporal action segmentation task show the
efficacy of DTL. In addition, we provide an extensive study to show the effect of DTL
constraints on task models.

2 Related Works

2.1 Temporal Action Segmentation

A temporal action segmentation model takes a set of video frames as input and predict the action
category for each frame. The model needs to capture both short and long term dependencies between
action categories. Earlier methods [3, 16] use sliding windows to model changes in visual appearance
in a short time. Long-term dependencies are captured from those short-term information by sequential
models like hidden Markov model [34] and recurrent networks [35, 47]. Despite the remarkable
performance, when these models are used to process long videos they still face forgetting issues and
heavy computation burden. Temporal Convolutional Network (TCN) [37, 38, 15, 39] enables efficient
modelling of temporal dependency in variable time spans with its flexible receptive field. Many
advancements are made based on MSTCN [15], which used stacked dilated temporal convolution
layers for temporal modelling. For example, ASRF [28] uses a boundary regression task on top
of MSTCN to improve the quality of segmentation. Huang et al. [26] proposed a graph-based
dependency model to improve the modeling of relations between actions. Finally, Transformer [54]
is introduced to this task and shows superior performance in [59]. Our view is that these methods
can be complemented by DTL, since many declarative constraints are difficult to learn from the data.
On the other hand, DTL can explicitly enforce these constraints on the task model during training.

2

Input Frames

Temporal Logic FormulaDeclarative Constraints

pour_water must after take_cup;

...

(a)

(b)

Task Loss

Temporal

Logic

 Loss

Task

Model

add_teabag must after take_cup;

never pour_juice if add_teabag;

...

Output

Formula Evaluator

...

...

...

Figure 2: An overview of DTL framework. (a) shows a typical action segmentation pipeline, where
a task model g takes input frames and output segmentation ŷ∗ for each action class. A task loss
LT is minimized during training. (b) shows the logic evaluation part of DTL. A set of declarative
constraints on actions are converted into a temporal logic formula ψ. A formula evaluator f takes ψ
and ŷ∗ as input, and evaluates the consistency between the two, resulting in a logic loss LTL.

2.2 Temporal Logic and Action Analysis

Temporal logic is a large family of logic systems that specify the relations between timed events.
Linear temporal logic (LTL) [45] is one of the earliest temporal logic. It is a propositional modal
logic that states necessity and possibility about events in a linear discrete succession of time steps.
Later variants of LTL include Metric Temporal Logic (MTL) [41], which introduces time units as
extra parameters to temporal operators, and Signal Temporal Logic [14], which specifies temporal
properties for continuous signals. Allen’s interval algebra [2] and Interval Temporal Logic (ITL) [22]
specify the relations between intervals and their composition. Temporal logic has been used to specify
constraints for program verification [45], robot control [13, 27, 46], and linguistics [42]. However,
its application in action analysis remains scarce. CASEE [21] uses ITL as a structural language to
describe atomic actions for event classification. T-LEAF [56] is the first (and so far the only, to the
best of our knowledge) attempt to apply temporal logic to action analysis. It uses an embedding
model to incorporate LTL formulae when training deep networks for action classification, which has
little guarantee on logical soundness and only handles a small set of constraints.

DTL adopts LTL for temporal constraints because LTL is: (1) more feasible than its successors with
more operators and (2) expressive enough to benefit action analysis. In principle, DTL can be used
with any logic system that is sound and whose formulae can be evaluated in a differentiable manner.

2.3 Logic Constraints on Neural Networks

Applying symbolic constraints to deep networks has been drawing increasing interest [25, 11, 40,
48, 20], yet it remains an open problem. An important challenge is that logic propositions generally
take discrete truth values, while end-to-end differentiability is usually required to optimize a network.
A workaround for this challenge is to find a continuous consistency measurement between network
outputs and constraints. Existing methods can be categorized into two branches based on whether
constraints are treated as data or procedures. The first branch is embedding-based [36, 30, 55, 56, 43],
which treats constraints and network outputs as data and project them into a continuous space, where
the distance between the two is used as a measurement. For example, LENSR [55] represents
logical constraints in Deterministic Decomposable Negation Normal Form (d-DNNF) [8] and uses
GCN [32] as the embedder. The second branch is procedure-based [57, 18, 19, 12, 24], which
compiles constraints into computational procedures over network outputs and uses the result as
consistency measurement. For example, semantic loss [57] compiles formulae into logic circuits [9],
along which the probability of the output satisfying the formula is computed as the measurement. We
design DTL as a procedure-based framework instead of an embedding-based one, since the latter
generally lacks a soundness guarantee: high similarities in the embedding space does not guarantee
logical correctness (or satisfaction).

3

3 Method

We consider the action segmentation task in a video clip with L frames and N candidate actions
A = {a1, . . . , aN}. As shown in Fig. 2, we assume that there is a deep task model g parameterized
by Θ, which takes frames x0, . . . ,xL−1 as input, and outputs ŷa1 , . . . , ŷaN , where ŷai ∈ RL is the
unnormalized score for the presence of action ai throughout the L frames. We assume ŷai,t > 0
indicates ai presents at time t, and ŷai,t ≤ 0 indicates the opposite. Apart from the ground truth
label ya1 , . . . ,yaN , there is a set of constraints that describe the relation between actions. The design
goal of DTL is to incorporate these constraints into the task model g, so that ŷ complies with both
the ground truth y and the constraints. In order to do so, we introduce a temporal logic representation
Ψ, and an evaluator f that enforces the constraints in formula ψ ∈ Ψ on g, through its outputs ŷ.

3.1 Syntax of Formulae

The definition of Ψ is an extension of Linear Temporal Logic (LTL) [45]. A formula ψ ∈ Ψ takes
any of the forms separated by “|” below:

ψ := True | False | a | ¬ψ1 | (ψ1 ∧ ψ2) | (ψ1 ∨ ψ2) | Xψ1 | Fψ1 | (ψ1Wψ2) | (ψ1Sψ2), (1)

where a ∈ A is the atomic proposition, and ψ1, ψ2 ∈ Ψ. The connectives X (NEXT), F (EVENTUAL),
W (WEAK_UNTIL), and S (SINCE) are modal operators that form the temporal relations between
propositions. In our context, atomic propositions a represents action a. Note that the definition
in Eqn. (A1) is recursive. For example, if a1 ∈ Ψ, then X . . .XFa1 ∈ Ψ. Semantically, Xψ is
satisfied when proposition ψ is satisfied in the next time step. Fψ is satisfied when ψ is satisfied by
the end of the sequence. ψ1Wψ2 being satisfied means that ψ1 must always be satisfied until ψ2 is
satisfied (and ψ2 might never be satisfied). ψ1Sψ2 being satisfied means ψ1 is always satisfied after
ψ2 is satisfied. Section D.1 provides a more formal definition of these operators.

3.2 Formula Evaluator

A formula is said to be satisfied by a truth value assignment if the assignment is semantically
compliant with the constraints. In the context of this paper, each atomic proposition ai is assigned
ŷai . Satisfiability is determined by evaluation, which is a function f of a formula ψ and ŷ:

ft(ψ, ŷ) = f(ψ, ŷa1:aN ,t:L−1) : Ψ× RL−t × · · · × RL−t︸ ︷︷ ︸
N times

→ R, (2)

where × refers to the Cartesian product. The two arguments of f are formula ψ and model output
ŷa1:aN . Parameter t ∈ [0, L− 1] is the start time of the evaluation. For example, t = 2 means that
the evaluation is between ψ and the prediction starting from the third frame, i.e. ŷa1:aN ,2:L−1. The
result of f is a satisfaction score that measures the consistency between ŷ and ψ.

Eqn. (2) is abstract and must be detailed for all possible forms of a formula ψ can take in Eqn. (A1).
We aim to expand the definition so that Ψ is logically sound, i.e. there is a determined relation
between ft(ψ, ŷ) and the satisfaction of ψ given ŷ. Specifically, we would like ft(ψ, ŷ) > 0 to imply
that ψ is satisfied by ŷ at time t. Moreover, Ψ must be differentiable to be incorporated with task
models. Towards these goals, we first define the evaluation for constants and atomic propositions:

ft(True, ŷ) = +∞, ft(False, ŷ) = −∞, ft(a, ŷ) = ŷa,t. (3)

Indeed, the evaluation result for True and False will always be positive and negative, because the
former is always satisfied and the latter is never satisfied. Note that if ψ = a, it is satisfied at time t
when ŷa,t > 0, i.e. action a happens at time t.

Next, we define the evaluation for operators “¬” (negation), “∧” (logical and), and “∨” (logical or):

ft(¬ψ1, ŷ) = −ft(ψ1, ŷ), (4)

ft(ψ1 ∧ ψ2, ŷ) = minγ
{
ft(ψ1, ŷ), ft(ψ2, ŷ)

}
, (5)

ft(ψ1 ∨ ψ2, ŷ) = maxγ
{
ft(ψ1, ŷ), ft(ψ2, ŷ)

}
, (6)

where γ is a parameter of function minγ{x1:L−1} = − 1
γ ln

∑L−1
i=1 e

−γxi , which approximates the
minimum value of {x1:L−1} [6], and maxγ{x1:L−1} = −minγ{−x1:L−1}. It can be shown [6]

4

pour_water (a1)
must after take_cup (a2).

Declarative Constraints

𝜓 = ¬𝑎!𝑊𝑎"
Temporal Logic Formula DAG

𝑎! ¬
𝑊

𝑎"

𝑎! ¬
𝑊

𝑎"
… !𝑦!!

!𝑦!"

𝑓":$%& 𝑎&, !𝑦 = !𝑦!!,":$%& =

𝑓":$%& 𝑎(, !𝑦 = !𝑦!",":$%& =

𝑓":$%& ¬𝑎&, !𝑦!! = −𝑓":$%& 𝑎&, !𝑦!!

…
0 𝐿 − 1

…

#𝑦

…

…

𝑓" ¬𝑎&𝑊𝑎(, !𝑦 = min) 𝑓":* ¬𝑎&, !𝑦!!
= min) 𝑓":(¬𝑎&, !𝑦!!
= min)

= (False)

=

𝑘 = 2 is the min. value s.t. 𝑓* 𝑎(, !𝑦 = True1 …

1 2 3 4 5

(1)

(2)

(3)

(4) (5)

Figure 3: The evaluation of an example constraint on two actions over L time steps. The con-
straint is first written as formula ψ = (¬a1Wa2), then represented as a DAG. (1) – (5) show how
f0(¬a1Wa2, ŷ) is computed. (1) shows the output ŷ of task model, where green boxes indicate
positive values (True) and grey boxes indicate negative values (False). (2) and (3) show the evaluation
of leaf nodes a1 and a2, which is the start of evaluation. (4) takes the evaluation results for a1 from
(2) and evaluate ¬a1 following Eqn. (4). In (5), the W node uses the result for ¬a1 from (4) and a2
from (3) to perform the evaluation for (¬a1Wa2) following Eqn. (9).

that limγ→∞ minγ{x1:L−1} = min{x1:L−1}. In Eqn. (4), the operator ¬ flips the sign of ft(ψ1, ŷ),
reflecting the negation semantics of ¬. In Eqn. (5), minγ{ft(ψ1, ŷ), ft(ψ2, ŷ)} will be negative
(False) if ψ1 or ψ2 or both are False, and will be positive (True) iff. both ψ1 and ψ2 are True. This is
consistent with the semantics of ∧. The same rationale applies to maxγ for ∨ in Eqn. (6).

Finally, we define the modal operators X, F, W, and S that are unique in Ψ. Intuitively, evaluating
Xψ1 is equivalent to evaluating ψ1 at the next time step. Fψ1 means there is at least one time step
at which ψ1 is satisfied. ψ1Wψ2 and ψ1Sψ2 require ψ1 to be always satisfied in the time period
specified by ψ2. We formally define them as follows:

ft(Xψ1, ŷ) = ft+1(ψ1, ŷ), (7)

ft(Fψ1, ŷ) = maxγ
{
ft:L−1(ψ1, ŷ)

}
, (8)

ft(ψ1Wψ2, ŷ) = minγ{ft:k(ψ1, ŷ)},where k ≥ t is the min. integer s.t. fk(ψ2, ŷ) > 0, (9)
ft(ψ1Sψ2, ŷ) = minγ{fk:L−1(ψ1, ŷ)},where k ≥ t is the min. integer s.t. fk(ψ2, ŷ) > 0. (10)

In Eqn. (9), minγ{ft:k(ψ1, ŷ)} is positive (True) iff. all elements of {ft:k(ψ1, ŷ)} are positive, which
means that ψ1 stays True from time t to time k. This is consistent with the semantics of W. We use
minγ for S in Eqn. (10) for the same reason.

The definitions in Eqn. (3)-(10) provide a soundness guarantee for Ψ, allowing us to use ft(ψ, ŷ) > 0
as an optimization objective to enforce the constraints in ψ on a task model. Formally, when γ →∞,
the approximated evaluation (because of minγ) becomes exact, and the following theorem is true by
construction (a proof is provided in Section D.2):
Theorem 1. (Soundness) With ψ ∈ Ψ, γ →∞: if ft(ψ, ŷ) > 0, then ψ is satisfied by ŷ at time t.

In essence, the evaluation process propagates network predictions from atomic propositions to logic
operators and finally to the formula. Equivalently, we can represent a formula as a directed acyclic
graph (DAG) where each leaf node is labeled with True, False, or action a; and each internal node is
labeled with logic operators. The edges of the DAG point from child nodes to their parents, along
which the truth value propagates following Eqn. (3)-(10). Fig. 3 illustrates how a constraint “a person
cannot pour water before taking a cup” is converted to a DAG and evaluated.

3.3 Constraints

This section discusses different types of constraints we find useful for action analysis and the way
they are represented using Ψ. A constraint can be categorized into either a temporal or a non-temporal
constraint based on whether it states the possibility and necessity of an action in a specific time
period. We propose two temporal constraints, namely Backward Dependency (BD) and Forward
Cancellation (FC), and two non-temporal constraints, namely Implication (Ip), and Exclusivity (Ex).
We also introduce how constraints of these types are curated from the training annotations.

5

Backward Dependency (BD) It is important to specify the proper order of actions because it
usually determines the semantics of an activity. An order is generally related to temporal dependency:
An action cannot be performed if its prerequisite actions did not occur. A way to describe this
dependency is “one action must occur before another”. We write this constraint as

ψBD = ∧(ai,aj)∈BBD(ai, aj) = ∧(ai,aj)∈B(Fai ∧ Faj)→ (¬aiWaj),

where (X → Y) means “X implies Y ” and is equivalent to (¬X ∨ Y). This logic expression means
the following: if ai and aj occurs in the same video, ai must not occur until aj occurs. Set B contains
action pairs that satisfy this constraint. In practice, (a1, a2) ∈ B if a2 always occurs before a1 for
any co-occurrence of a1 and a2 in the annotation.

Forward Cancellation (FC) Apart from backward dependence, actions can make some other
actions impossible in all future time steps. For example, in a video of salad preparation, the
action serve_salad_to_plate marks the end of the preparation. Once this action occurs, actions like
cut_lettuce or cut_tomato should not occur thereafter. We write this constraint as

ψFC = ∧(ai,aj)∈FFC(aj , ai) = ∧(ai,aj)∈F (Fai ∧ Faj)→ (¬aiSaj),
which reads “if ai and aj occur in the same video, ai cannot occur after the occurrence of aj”. Set F
contains action pairs that satisfy this constraint.

Implication (Ip) There could be some actions that are semantically dependent but temporally
independent: these actions are necessary to complete an activity, but the order is not crucial. For
example, in a video on juice preparation, the person must take_cup and peel_orange, but these two
actions are not temporally correlated. We write this constraint as

ψIp = ∧(ai,aj)∈IIp(ai, aj) = ∧(ai,aj)∈I(Fai → Faj).

Set I contains action pairs that satisfy this constraint. In practice, (a1, a2) ∈ I if a2 always occurs if
a1 occurs in the annotation.

Exclusivity (Ex) As opposed to what implication constraints describe, some actions are mutually
exclusive: they will never co-occur in the same video. For example, if we know that a video contains a
single activity that is “coffee” or “frying eggs”, then pour_coffee cannot happen if put_egg_into_plate
occurs at any time in the video. This constraint is written as

ψEx = ∧(ai,aj)∈X Ex(ai, aj) = ∧(ai,aj)∈X (Fai → ¬Faj).
Set X contains pairs of actions that never occur in the same video.

Finally, we connect all constraints using ∧ as ψ = ψBD ∧ ψFC ∧ ψIp ∧ ψEx.

3.4 Training with Constraints

During training, we hope that the output ŷ is constrained by both ground truth y and logic constraints
described by ψ. The constraints from ground truth are enforced by a task-specific task loss LT(ŷ,y),
for example, framewise cross-entropy loss for the temporal action segmentation task. For logic
constraints, we treat ŷ as an assignment of ψ and from Theorem 1 we know ft(ψ, ŷ) > 0 if ŷ
satisfies ψ from time t. Therefore, for any g we can minimize the following objective:

L = LT + λLTL = LT(ŷ,y) + λσ
(
f0(ψ, ŷ)

)
, (11)

where LT is the loss term for the target task, λ is the weight of the loss of logic LTL, and σ(x) =
log(1 + e−x) penalizes negative evaluation results. We set t = 0 in ft(ψ, ŷ) in our experiments,
since we require the prediction to satisfy the constraints from the first frame. Note that it is possible to
set t to different values so that the constraints can be applied flexibly at different temporal locations.

4 Experiments

In this section, we first assess the proposed DTL using the temporal action segmentation task. Through
this task, we show that DTL can provide dependency information to improve the performance of
action analysis models, in both quantitative and qualitative manners. Then, we perform an ablation
study to show the effects of different types of constraints. Finally, with a gradient-based analysis, we
explain how DTL affects the task model. All experiments are run with PyTorch 1.10 on an NVIDIA
A6000 GPU. More details are covered in the appendix.

6

Table 1: Results of action segmentation on 50Salads dataset.
Task Model Edit F1@10 F1@25 F1@50 Acc

GRU
Base 55.2± 2.3 63.7± 2.3 60.5± 2.7 53.4± 2.9 79.0± 2.4
Base + DTL 62.1± 1.6 69.3± 1.4 66.5± 1.8 58.9± 1.9 80.3± 2.2
Gain 7.1 ± 2.8 5.6 ± 2.7 6.0 ± 3.2 5.5 ± 3.6 1.3 ± 3.3

MS-TCN

Base [15] 67.9 76.3 74.0 64.5 80.7
Base (Rerun) 69.5± 1.7 75.7± 1.7 73.0± 1.9 64.5± 2.2 80.0± 1.4
Base + DTL 70.5± 1.0 78.3± 1.3 76.5± 1.1 67.6± 1.9 81.5± 1.5
Gain 1.0 ± 2.0 2.6 ± 2.1 3.5 ± 2.2 3.0 ± 2.9 1.5 ± 2.0

ASFormer

Base [59] 79.6 85.1 83.4 76.0 85.6
Base (Rerun) 76.9± 0.9 83.6± 0.9 81.5± 0.8 73.9± 1.3 84.2± 1.2
Base + DTL 80.5± 1.5 87.1± 1.3 85.7± 1.2 78.5± 1.6 86.9± 1.5
Gain 3.6 ± 1.7 3.5 ± 1.6 4.2 ± 1.4 4.6 ± 2.1 2.7 ± 1.9

Table 2: Results of action segmentation on Breakfast dataset.
Task Model Edit F1@10 F1@25 F1@50 Acc

GRU
Base 56.8± 2.0 53.3± 2.3 48.4± 2.5 38.4± 2.1 70.0± 1.7
Base + DTL 58.4± 1.7 56.5± 1.1 51.4± 1.3 40.7± 2.1 70.3± 1.1
Gain 1.6 ± 2.7 3.2 ± 2.6 3.0 ± 2.8 2.3 ± 2.9 0.4 ± 2.0

MS-TCN

Base [15] 61.7 52.6 48.1 37.9 66.3
Base (Rerun) 71.2± 1.4 71.7± 1.3 65.7± 1.5 52.3± 1.8 71.3± 1.2
Base + DTL 71.6± 1.1 73.0± 0.4 67.7± 1.2 54.4± 0.8 72.3± 0.5
Gain 0.5 ± 1.8 1.2 ± 1.3 2.0 ± 2.0 2.1 ± 2.0 1.1 ± 1.3

ASFormer

Base [59] 75.0 76.0 70.6 57.4 73.5
Base (Rerun) 76.2± 1.4 77.8± 1.2 72.9± 1.6 60.5± 1.7 75.0± 1.0
Base + DTL 77.7± 1.6 78.8± 1.1 74.5± 1.5 62.9± 1.6 75.8± 0.9
Gain 1.5 ± 2.1 1.1 ± 1.6 1.6 ± 2.2 2.4 ± 2.4 0.8 ± 1.4

4.1 Temporal Action Segmentation

Datasets We use 50Salads [51] and Breakfast [33] for this task. In these datasets, each video spans
at least 200 seconds and contains at least five different actions. 50Salads contains 50 videos of salad
preparation with frame-level action annotations of 19 actions. We generated a total of 313 constraints
from its annotation. Breakfast consists of 1,712 videos with 18 video-level activities, and each frame
has one of the 47 actions. We use only its action-level annotations for this task. There are a total of
2,145 constraints for this dataset. The details of the constraints are provided in Section E.

Task Models We use three task models in evaluation: a single-layer bidirectional Gated Recurrent
Unit (GRU) [5], a temporal convolution model MSTCN [15], and a transformer model ASFormer [59].
We use all three task models to examine the performance gain brought by DTL. For the ablation study
and further discussion, we use GRU and MSTCN for their ease of training. The architecture of GRU
is detailed in the appendix. For experiments on MSTCN and ASFormer, we retrain the corresponding
models using their released source codes. The task models are trained and assessed using the protocol
in [15], where the inputs to the task models are the 2048-dimension features extracted using I3D [4]
pre-trained on ImageNet [10]. Frame-wise cross-entropy is used as the task loss for all the task
models. Levenshtein distance (Edit), F1 score with thresholds 0.1, 0.25, and 0.5 (F1@{10,25,50}),
and frame-wise accuracy (Acc) are used to measure the quality of the outputs. The results are from a
k-fold cross-validation, where k = 5 for 50Salads and k = 4 for Breakfast.

Performance Table 1 and 2 show the performance of task models trained without (Base) and with
(Base + DTL) temporal logic objective LTL, and the performance difference (Gain), on 50Salads
and Breakfast respectively. For completeness, we also include the base performance published
in the original papers where applicable. A prominent observation is that the performance gain is

7

Table 3: Performance gain of GRU and MSTCN when trained with individual/all types of constraints.
There are no exclusivity constraints in 50Salads.

(a) 50Salads

Task Model Edit F1@10 F1@25 F1@50 Acc

GRU

+BD 0.7 -1.3 -0.3 -0.3 0.5
+FC 7.0 5.5 6.6 6.3 2.1
+Ex — — — — —
+Ip -0.8 -0.9 -0.8 -1.2 0.6
+All 7.1 5.6 6.0 5.5 1.3

MSTCN

+BD 0.1 0.3 0.6 0.0 0.1
+FC 0.2 1.0 1.0 0.6 0.1
+Ex — — — — —
+Ip 0.8 2.6 2.8 1.9 1.0
+All 1.0 2.6 3.5 3.0 1.5

(b) Breakfast

Task Model Edit F1@10 F1@25 F1@50 Acc

GRU

+BD 0.4 0.8 0.3 0.2 -0.2
+FC 1.0 2.2 1.8 1.1 -0.1
+Ex 0.3 1.2 1.7 0.9 0.1
+Ip 1.1 2.2 2.1 1.9 0.8
+All 1.6 3.2 3.0 2.3 0.4

MSTCN

+BD 0.2 1.1 1.4 1.7 0.7
+FC -0.1 0.8 1.3 0.8 0.2
+Ex 0.1 0.7 0.8 1.1 -0.7
+Ip 0.0 0.4 1.0 1.0 -0.2
+All 0.5 1.2 2.0 2.1 1.1

add_dressing

serve_salad_onto_plate

serve_salad_onto_plate

add_dressing mix_ingredients mix_dressing

add_dressing

serve_salad_onto_plate

(a) Example output of MSTCN on 50Salads.

SIL

SIL

SIL

take_cup add_teabag pour_water

pour_water

pour_watertake_cup

pour_coffee

add_teabag

add_teabag

(b) Example output of GRU on Breakfast.

Figure 4: Qualitative comparison between model trained with and without DTL. In each group, the
first row is the ground-truth, the second row is the baseline model, and the last row is the task model
trained with DTL.

4.2 Ablation Study231

To understand the effects of each constraint type, we perform an ablation study using GRU and232

MSTCN on both datasets. In each experiment, we apply only one type of rules and retrain the task233

model. The results are shown in Table 3. The first observation is that while applying constraints234

helps the task model, the extent of improvement differs for different model on different datasets.235

On 50Salads, nearly all the action classes presents in each individual video samples, making Ip236

constraints less helpful for GRU. However, Ip is the most helpful constraint type for MSTCN, which237

indicates that MSTCN is comparably weaker in modelling action co-occurrence and benefit more238

from this constraint. On the other hand, the more complicated nature of Breakfast makes both models239

benefit from all four types of constraints. Another important observation is that more constraints240

does not guarantee better performance. For example, GRU enjoys the highest improvement with241

only FC constraints — higher than the improvement when BD and Ip are added. This reveals a242

tradeoff between precision and completeness of constraints: because the minγ and maxγ functions243

used in Equation (5)-(10) are approximations, evaluation becomes less accurate when the number of244

constraints increases. For MSTCN on 50Salads and both models on Breakfast dataset, the benefit of245

more complete constraints outweighs the increased evaluation errors, resulting more improvements246

when using all constraints.247

4.3 Qualitative Results248

We qualitatively compare predictions from task models trained with and without DTL in249

Fig. 4. In Fig. 4a, we show the output of MSTCN on 50Salads. Note that the baseline250

MSTCN predicts a mix_dressing action after add_dressing, which is in conflict with a FC rule251

FC(add_dressing,mix_dressing) because dressing cannot be mixed after it has been added to the252

salad. A similar example about GRU on Breakfast is shown in Fig. 4b, where the action pour_coffee253

erroneously presents in a video for tea preparation. The baseline output violates an exclusivity rule254

F add_teabag → ¬F pour_coffee because except special cases coffee should not be added to tea.255

Both errors are fixed in the same models trained with DTL. Moreover, we notice that correcting an256

individual wrong segment improves the quality of the whole output sequence as the output near the257

fixed segment are also corrected. This is because the task models we consider are: (a) recurrent258

models that depend current output on past inputs, or (b) convolutional/transformer models that predict259

based on receptive field/attention information. In either case, correcting an error fixes the cascaded260

effect it has on the model states, which improves the quality of all outputs nearby.261

4.4 Understand the Effects of DTL262

One of the biggest benefit of DTL, as discussed in Section 1, is that it provides additional supervisory263

signals for temporal constraints which are implicit in training data. We would like to understand how264

those signals affect the task model. Formally, given a model g parameterized by Θ and an input x,265

we would like to know if a constraint ψ has encouraged or suppressed the model’s output about action266

a at time step t. This is possible by assuming that the output of the model is continuous with respect267

to its parameters, or lim∥δΘ∥→0 gΘ+δΘ(x) = gΘ(x). With this assumption, the effect of ψ on Θ268

can be approximated by the changes in the output as we update Θ based on f0(ψ, ŷ). Specifically,269

we first calculate δψΘ = ∂σ(f0(ψ, ŷ))/∂Θ, where σ(x) = log(1 + e−x) as in Equation (11).270

Then, we perform a step of gradient descend and get an updated model as Θ′ = Θ− γδψΘ, where271

γ = 10−4 is a small update step. Finally, the output difference caused by ψ with input x is obtained as272

∆ψ,x = gΘ′(x)− gΘ(x), where ∆ψ,x ∈ RN×L. A positive (negative) ∆ψ,x
a,t indicates a promotive273

(suppressive) effect of ψ on ŷa,t as it increases (decreases) the score for action a at time t.274

8

GT

w/o DTL

w/ DTL

(a) Example output of MSTCN on 50Salads.

SIL

SIL

SIL

take_cup add_teabag pour_water

pour_water

pour_watertake_cup

pour_coffee

add_teabag

add_teabag

(b) Example output of GRU on Breakfast.

Figure 4: Qualitative comparison between model trained with and without DTL, which shows that
logical errors are fixed by DTL. In each group, from the top to the bottom show the ground truth
(GT), the prediction from baseline task model, and the prediction from task model trained with DTL.

consistently positive. This indicates the applicability and efficacy of DTL on task models with
different architectures and on datasets of different scales. Another observation is that the gains on
different metrics are not even: there are noticeable improvements on Levenshtein distance and F1
scores while the improvement on frame-wise accuracy is not as significant. We conjecture the reason
to be that frame-wise accuracy treats frames independently and does not distinguish well between
models with and without the over-segmentation problem. Since DTL constrains the relations between
segments of actions instead of frames, metrics based on segment differences like Levenshtein distance
and F1-scores are therefore comparably better reflections of performance improvement.

4.2 Ablation Study

To understand the effects of each constraint type, we perform an ablation study using GRU and
MSTCN on both datasets. In each experiment, we apply only one type of constraint and retrain the
task model. The results are shown in Table 3. The first observation is that while applying constraints
helps the task model, the extent of improvement differs for different models on different datasets.
On 50Salads, nearly all the action classes are present in each video sample, making Ip constraints
less helpful for GRU. However, Ip is the most helpful constraint type for MSTCN, which indicates
that MSTCN is comparably weaker in modelling action co-occurrence and benefits more from this
constraint. On the other hand, the more complicated nature of Breakfast makes both models benefit
from all four types of constraints. Another important observation is that more constraints do not
guarantee better performance. For example, GRU enjoys the highest improvement with only FC
constraints — higher than when BD and Ip are added. This reveals a trade-off between precision
and completeness of constraints: Because the minγ and maxγ functions used in Eqn. (5)-(10) are
approximations, the evaluation becomes less accurate when the number of constraints increases.
For MSTCN on 50Salads and both models on Breakfast, the benefit of more complete constraints
outweighs the increased evaluation errors, resulting in more improvements when using all constraints.
Understanding the fine-grained interactions between the constraints and different backbone models
remains an open question.

4.3 Qualitative Results

We qualitatively compare predictions from task models trained with and without DTL in Fig. 4.
In Fig. 4a, we show the output of MSTCN on 50Salads. Note that the baseline MSTCN

8

· · ·

(Preceding actions omitted.)

mix_dressing peel_cucumber cut_cucumber mix_ingredients serve_salad_onto_plate add_dressing · · ·

(Succeeding actions omitted.)

Implication Backward Dependency

BD(add_addressing, mix_dressing)

Figure 5: A snippet prediction from 50Salads and the most influential constraints for each segmenta-
tion. The black arrows represent temporal order. The colored arrows represent constraint types.

Figure 6: A heatmap showing ∆ψi
a of Breakfast, the vertical axis represents the 47 actions a and the

horizontal axis is the 2,145 constraints ψi. Labels at the bottom indicate constraint types. A brighter
color indicates that a constraint has a more positive effect on an action.

predicts a mix_dressing action after add_dressing, which is in conflict with a FC constraint
FC(add_dressing,mix_dressing) because dressing cannot be mixed after it has been added to the
salad. A similar example of GRU on Breakfast is shown in Fig. 4b, where the action pour_coffee is
erroneously predicted in a video for “tea preparation”. The baseline output violates an exclusivity
constraint F add_teabag → ¬F pour_coffee because, except in special cases, coffee should not
be added to tea. Both errors are fixed in the models trained with DTL. Moreover, we notice that
correcting an individual wrong segment improves the quality of the whole output sequence. This
is because the task models we consider are: (a) recurrent models that condition current output on
past inputs, or (b) convolutional/transformer models that predict based on receptive field/attention
information. In either case, correcting an error fixes the cascade effect it has on the model states,
which improves the quality of all nearby outputs.

4.4 Analyzing the Effects of DTL

One of the greatest benefits of DTL is that it provides additional supervisory signals for temporal
constraints, which are implicit in training data. We would like to understand how those signals affect
the task model. Formally, given a model g parameterized by Θ and an input x, we would like to know
if a constraint ψi promotes or suppresses the model’s output about action a at time t. We assume
that the output of the model is continuous with respect to its parameters, or lim∥δΘ∥→0 gΘ+δΘ(x) =
gΘ(x). With this assumption, the effect of ψi on Θ can be approximated by the changes in the output
as we update Θ based on f0(ψi, ŷ). Specifically, we first compute δψiΘ = ∂σ(f0(ψi, ŷ))/∂Θ,
where σ(x) = log(1 + e−x) as in Eqn. (11). Then, we update Θ as Θ′ = Θ − γδψiΘ, where
γ = 10−4 is a small update step. Finally, the difference in output caused by ψi is obtained as
∆ψi,x = gΘ′(x)−gΘ(x), where ∆ψi,x ∈ RN×L. A positive (negative) ∆ψi,x

a,t indicates a promotive
(suppressive) effect of ψi on ŷa,t as it increases (decreases) the score for action a at time t.

We use ∆ψi,x to pinpoint the constraint that makes a model predict an action a at time t. This can
be done by calculating ∆ψi,x

a,t for all ψi in ψ and find the most positively influential constraint as
argmaxψi ∆

ψi,x
a,t . For example, Fig. 5 shows a snippet of prediction from MSTCN on 50Salads and

the constraints we found contributed the most to each predicted segment. One important observation
from this is that actions in earlier time steps are generally promoted by later actions, as the former
could serve as the prerequisites of the latter.

We can also summarize the total effect of ψi on all time steps and samples as ∆ψi
a =

1
|X |

∑
x∈X

1
L

∑L−1
t=0 ∆ψi,x

a,t . ∆ψi
a provides two pieces of information. The first is the effect of

ψi on all actions. As illustrated as a heatmap in Fig. 6, ∆ψi
a suggest that the Ip constraints play

mainly promotional roles, where the FC, BD, and Ex constraints are mostly suppressive. This is
consistent with our design intuitions: Ip encourages co-occurrence of actions, FC and Ex constraints
are intrinsically prohibitive, and BD constraints suppress an action if its prerequisites are missing.
The second information is how an action a is affected by other actions. This can be determined
by selecting the most promotive and suppressive constraints for action a, and checking the actions
involved in these constraints. Table 4 shows the relations between example actions in the Breakfast

9

Table 4: Actions in Breakfast dataset, and the most influential constraints. “∼” refers to the action in
the leftmost column of the row it is in.

Action Top Positive Constraint Top Negative Constraint

stir_fruit Ip(cut_fruit,∼) BD(∼, put_fruit2bowl)
stir_tea Ip(add_teabag,∼) Ex(put_milk,∼)
put_toppingOnTop Ip(put_bunTogether,∼) FC(put_bunTogether,∼)

dataset. An interesting observation is that for put_ToppingOnTop the most promotive and suppressive
action is the same put_PutBunTogether, meaning that relation between two actions could largely
change depending on the context. This also indicates that DTL can help the model learn different
dependencies between the same pair of actions.

5 Conclusion

We propose DTL, a framework that uses temporal logic to constrain the training of action analysis
models. Experimental results on the action segmentation task show that DTL effectively improves
the performance of task models with different architectures. An ablation study reveals the divergent
effect of different types of rules on different task models. Our work suggests that temporal constraints
can be explicitly provided to a deep network and reduce logical errors in its output. The source code
of our work is accessible at https://diff-tl.github.io/.

Limitations There remain some limitations in this work. First, in this work, we only explored
a subset of temporal knowledge that is expressible as frequency matrices. When such temporal
correlation is sparse, DTL is less effective. This calls for more flexible knowledge curation methods
(e.g. with human involvement). Besides, non-temporal knowledge about actions, such as object
affordance, can be exploited to handle more complicated actions like the verb-object compositions
in Epic-Kitchens [7]. Second, in terms of knowledge type, DTL can benefit from more expressive
logic languages, like Allen’s Interval Algebra [2], which supports first-order temporal constraints
beyond necessities and possibilities. Moreover, DTL formulae are evaluated in their raw forms, which
means that the evaluation efficiency could be further improved by better formula compilation [9]
and optimized message passing on directed acyclic graphs. In addition, the constraints we collected
from dataset annotations only form a partial and clean view of real-world scenarios. The real-world
constraints are more comprehensive and complex, which poses a higher requirement on generalization
and robustness against uncertainties.

Acknowledgments and Disclosure of Funding

This research is partially supported by the National Research Foundation, Singapore under its
Strategic Capability Research Centres Funding Initiative. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore.

References
[1] Hyemin Ahn and Dongheui Lee. Refining action segmentation with hierarchical video represen-

tations. In CVPR, pages 16302–16310, 2021.

[2] James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–
843, 1983.

[3] Subhabrata Bhattacharya, Mahdi M. Kalayeh, Rahul Sukthankar, and Mubarak Shah. Recogni-
tion of complex events: Exploiting temporal dynamics between underlying concepts. In CVPR,
pages 2243–2250, 2014.

[4] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the
kinetics dataset. In CVPR, pages 4724–4733, 2017.

10

https://diff-tl.github.io/

[5] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. In NIPS Workshop on Deep Learning,
2014.

[6] Marco Cuturi and Mathieu Blondel. Soft-DTW: a differentiable loss function for time-series.
In ICML, pages 894–903, 2017.

[7] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos,
Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.
Rescaling egocentric vision: Collection, pipeline and challenges for EPIC-KITCHENS-100.
Int. J. Comput. Vis., 130(1):33–55, 2022.

[8] Adnan Darwiche. On the tractable counting of theory models and its application to truth
maintenance and belief revision. J. Appl. Non Class. Logics, 11(1-2):11–34, 2001.

[9] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
17:229–264, 2002.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255, 2009.

[11] Ivan Donadello, Luciano Serafini, and Artur S. d’Avila Garcez. Logic tensor networks for
semantic image interpretation. In IJCAI, pages 1596–1602, 2017.

[12] Paolo Dragone, Stefano Teso, and Andrea Passerini. Neuro-symbolic constraint programming
for structured prediction. In NeSy, pages 6–14, 2021.

[13] Georgios Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion planning
for mobile robots. In ICRA, pages 2020–2025, 2005.

[14] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci., 410(42):4262–4291, 2009.

[15] Yazan Abu Farha and Jürgen Gall. MS-TCN: multi-stage temporal convolutional network for
action segmentation. In CVPR, pages 3575–3584, 2019.

[16] Alireza Fathi, Xiaofeng Ren, and James M. Rehg. Learning to recognize objects in egocentric
activities. In CVPR, pages 3281–3288, 2011.

[17] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for
video recognition. In ICCV, pages 6201–6210, 2019.

[18] Marc Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, and Martin T.
Vechev. DL2: training and querying neural networks with logic. In ICML, pages 1931–1941,
2019.

[19] Eleonora Giunchiglia and Thomas Lukasiewicz. Multi-label classification neural networks with
hard logical constraints. J. Artif. Intell. Res., 72:759–818, 2021.

[20] Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas Lukasiewicz. Deep learning with
logical constraints. In IJCAI-ECAI, 2022.

[21] Asaad Hakeem, Yaser Sheikh, and Mubarak Shah. CASEE: A hierarchical event representation
for the analysis of videos. In AAAI, pages 263–268, 2004.

[22] Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time intervals. J. ACM,
38(4):935–962, 1991.

[23] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
A large-scale video benchmark for human activity understanding. In CVPR, pages 961–970.
IEEE Computer Society, 2015.

[24] Nicholas Hoernle, Rafael-Michael Karampatsis, Vaishak Belle, and Kobi Gal. MultiplexNet:
Towards fully satisfied logical constraints in neural networks. In AAAI, 2022.

11

[25] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard H. Hovy, and Eric P. Xing. Harnessing deep
neural networks with logic rules. In ACL, 2016.

[26] Yifei Huang, Yusuke Sugano, and Yoichi Sato. Improving action segmentation via graph-based
temporal reasoning. In CVPR, pages 14021–14031, 2020.

[27] Craig Innes and Subramanian Ramamoorthy. Elaborating on learned demonstrations with
temporal logic specifications. In RSS, 2020.

[28] Yuchi Ishikawa, Seito Kasai, Yoshimitsu Aoki, and Hirokatsu Kataoka. Alleviating over-
segmentation errors by detecting action boundaries. In WACV, pages 2321–2330, 2021.

[29] Alec Kerrigan, Kevin Duarte, Yogesh S. Rawat, and Mubarak Shah. Reformulating zero-shot
action recognition for multi-label actions. In NeurIPS, pages 25566–25577, 2021.

[30] Yoon Kim, Yacine Jernite, David A. Sontag, and Alexander M. Rush. Character-aware neural
language models. In AAAI, pages 2741–2749, 2016.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[32] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[33] Hilde Kuehne, Ali Bilgin Arslan, and Thomas Serre. The language of actions: Recovering the
syntax and semantics of goal-directed human activities. In CVPR, pages 780–787, 2014.

[34] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-end generative framework for video
segmentation and recognition. In WACV, pages 1–8, 2016.

[35] Hilde Kuehne, Alexander Richard, and Juergen Gall. A hybrid RNN-HMM approach for
weakly supervised temporal action segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
42(4):765–779, 2020.

[36] Phong Le and Willem H. Zuidema. Compositional distributional semantics with long short term
memory. In *SEM@NAACL-HLT, pages 10–19, 2015.

[37] Colin Lea, Michael D. Flynn, René Vidal, Austin Reiter, and Gregory D. Hager. Temporal
convolutional networks for action segmentation and detection. In CVPR, pages 1003–1012,
2017.

[38] Peng Lei and Sinisa Todorovic. Temporal deformable residual networks for action segmentation
in videos. In CVPR, pages 6742–6751, 2018.

[39] Shi-Jie Li, Yazan AbuFarha, Yun Liu, Ming-Ming Cheng, and Juergen Gall. Ms-tcn++: Multi-
stage temporal convolutional network for action segmentation. IEEE Trans. Pattern Anal. Mach.
Intell., 2020.

[40] Yitao Liang and Guy Van den Broeck. Learning logistic circuits. In AAAI, pages 4277–4286,
2019.

[41] Angelo Montanari. Metric and Layered Temporal Logic for Time Granularity. PhD thesis,
University of Amsterdam, 1996.

[42] Toshiyuki Ogihara. Tense and aspect in truth-conditional semantics. Lingua, 117:392–418,
2007.

[43] Dhruvesh Patel, Pavitra Dangati, Jay-Yoon Lee, Michael Boratko, and Andrew McCallum.
Modeling label space interactions in multi-label classification using box embeddings. In ICLR,
2022.

[44] A. J. Piergiovanni and Michael S. Ryoo. Temporal gaussian mixture layer for videos. In ICML,
volume 97 of Proceedings of Machine Learning Research, pages 5152–5161. PMLR, 2019.

[45] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

12

[46] Aniruddh Gopinath Puranic, Jyotirmoy V. Deshmukh, and Stefanos Nikolaidis. Learning
from demonstrations using signal temporal logic in stochastic and continuous domains. IEEE
Robotics Autom. Lett., 6(4):6250–6257, 2021.

[47] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly supervised action learning with
RNN based fine-to-coarse modeling. In CVPR, pages 1273–1282, 2017.

[48] Sungyong Seo, Sercan Ö. Arik, Jinsung Yoon, Xiang Zhang, Kihyuk Sohn, and Tomas Pfister.
Controlling neural networks with rule representations. In NeurIPS, pages 11196–11207, 2021.

[49] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav
Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In
ECCV (1), volume 9905 of Lecture Notes in Computer Science, pages 510–526. Springer, 2016.

[50] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human
actions classes from videos in the wild. CoRR, abs/1212.0402, 2012.

[51] Sebastian Stein and Stephen J. McKenna. Combining embedded accelerometers with computer
vision for recognizing food preparation activities. In UbiComp, pages 729–738, 2013.

[52] Praveen Tirupattur, Kevin Duarte, Yogesh Singh Rawat, and Mubarak Shah. Modeling multi-
label action dependencies for temporal action localization. In CVPR, pages 1460–1470, 2021.

[53] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A
closer look at spatiotemporal convolutions for action recognition. In CVPR, pages 6450–6459,
2018.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 6000–6010,
2017.

[55] Yaqi Xie, Ziwei Xu, Kuldeep S. Meel, Mohan S. Kankanhalli, and Harold Soh. Embedding
symbolic knowledge into deep networks. In NeurIPS, pages 4235–4245, 2019.

[56] Yaqi Xie, Fan Zhou, and Harold Soh. Embedding symbolic temporal knowledge into deep
sequential models. In ICRA, pages 4267–4273, 2021.

[57] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In ICML, 2018.

[58] Ziwei Xu, Xudong Shen, Yongkang Wong, and Mohan S. Kankanhalli. Unsupervised motion
representation learning with capsule autoencoders. In NeurIPS, pages 3205–3217, 2021.

[59] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. ASFormer: Transformer for action segmentation.
In BMVC, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] While Theorem 1 is

true by construction, we provide a sketchy proof in Section D.2.
3. If you ran experiments...

13

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Training details are mostly provided in Section 4 while some extra
information is in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] With an exception that error bars are omitted for clarity
in Table 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used publically

available 50Salads and Breakfast dataset, the original papers have been cited.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] The code and data are publicly available and the consent has
been described in the cited papers.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] No such information was found in the dataset
we use.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

A Table of Notations

The table below shows the notations grouped by the modules.

Table A1: Table of Notations
Model

gΘ A task model parameterized by Θ
y Ground truth
ŷ Output of the task model
ai The ith action class, or its corresponding atomic proposition
ψ A DTL formula
Ψ The set of all DTL formulas
ft(ψ, ŷ) Evaluation of ŷ against formula ψ at time t

Sizes

L Length of input sequence
N Number of action classes

Logic Operators

¬,∧,∨ Logical NEGATION, logical AND, and logical OR
X Temporal operator NEXT
F Temporal operator EVENTUAL
W Temporal operator WEAK_UNTIL
S Temporal operator SINCE

Constraints

BD(ai, aj) Action ai is backward dependent on action aj
FC(ai, aj) Action ai forward cancels action aj
Ip(ai, aj) Action ai implies action aj
Ex(ai, aj) Action ai excludes action aj

B Implementation Details

Task Models. The implementation for MSTCN [15] and ASFormer [59] are from existing open-
source code provided by corresponding authors. The GRU is implemented as follows: a fully-
connected layer first transforms the 2048-dimension input into a 512-dimension vector. The vector is
then sent to a bi-directional Gated Recurrent Unit layer with a hidden size of 512, which yields a
1024-dimension vector. The vector is finally transformed by a second fully-connected layer into an
N -dimension vector, where each dimension represents the un-normalized score of an action class.

Hyperparameters. There are two hyperparameters in DTL: γ and λ. γ is the parameter for minγ()
and maxγ(), and is set to 1. λ is the weight for temporal logic loss. We set λ = 0.1 for both GRU
and MSTCN, and λ = 0.005 for ASFormer. All hyperparameters are determined empirically.

Training. All the experiments are performed on an NVIDIA A6000 GPU with PyTorch 1.10. The
training for MSTCN and ASFormer follows the way defined in the corresponding source code. We
use Adam [31] to optimize the GRU with a learning rate of 5× 10−4 for 50 epochs. The model with
the best validation performance is reported.

C Class-wise Performances

We provide class-wise performance (measured by F1@25) comparison between task models trained
with and without DTL. The result is shown in Fig. A1 and Fig. A2. A general observation is that
actions with lower performance on task models without DTL benefit more from DTL. We conjecture
that actions with higher performance reflect the part of knowledge which is better learned by the

15

add_pepper
add_oil

place_cucumber_in
to_bowl

add_salt

place_tomato_into_bowl

cut_cu
cumber

add_vinegar

mix_ingredients

place_lettuce_into_bowl

add_dressin
g

cut_ch
eese

cut_to
mato

cut_le
ttuce

place_cheese_into_bowl

mix_dressin
g

serve_salad_onto_plate

peel_cu
cumber

actio
n_end

actio
n_sta

rt
65

70

75

80

85

90

95

100

Avg. Improvement: 0.7
Avg. Improvement: 3.6

F1@25 for MSTCN on 50Salads
w/o DTL
w/ DTL

Figure A1: Class-wise F1@25 score for MSTCN on 50Salads. The classes on the horizontal axis
are sorted based on the performance of the task model without DTL. Dashed line shows the median
performance of all classes. The annotation above (below) the line indicates the averaged improvement
for classes ranked at top (bottom) 50% in the baseline performance.

cu
t_

fru
it

cr
ac

k_
eg

g
bu

tte
r_

pa
n

fry
_e

gg
ad

d_
sa

ltn
pe

pp
er sil

pu
t_

fru
it2

bo
wl

pe
el

_f
ru

it
ta

ke
_p

la
te

st
irf

ry
_e

gg
fry

_p
an

ca
ke

po
ur

_m
ilk

sp
oo

n_
flo

ur
po

ur
_o

il
sp

oo
n_

po
wd

er
st

ir_
do

ug
h

po
ur

_d
ou

gh
2p

an
pu

t_
eg

g2
pl

at
e

pu
t_

to
pp

in
go

nt
op

ta
ke

_b
ow

l
sm

ea
r_

bu
tte

r
ta

ke
_c

up
po

ur
_c

of
fe

e
ad

d_
te

ab
ag

ta
ke

_k
ni

fe
sq

ue
ez

e_
or

an
ge

st
ir_

eg
g

po
ur

_c
er

ea
ls

po
ur

_e
gg

2p
an

pu
t_

pa
nc

ak
e2

pl
at

e
st

ir_
m

ilk
pu

t_
bu

nt
og

et
he

r
cu

t_
bu

n
po

ur
_ju

ice
po

ur
_w

at
er

po
ur

_f
lo

ur
ta

ke
_g

la
ss

sp
oo

n_
su

ga
r

st
ir_

ce
re

al
s

cu
t_

or
an

ge
ta

ke
_t

op
pi

ng
st

ir_
fru

it
ta

ke
_s

qu
ee

ze
r

po
ur

_s
ug

ar
st

ir_
co

ffe
e

ta
ke

_e
gg

s
ta

ke
_b

ut
te

r
st

ir_
te

a

60

70

80

90

100

Avg. Improvement: 0.2
Avg. Improvement: 2.5

F1@25 for GRU on Breakfast
w/o DTL
w/ DTL

Figure A2: Class-wise F1@25 score for GRU on Breakfast. The classes on the horizontal axis are
sorted based on the performance of the task model without DTL. Dashed line shows the median
performance of all classes. The annotation above (below) the line indicates the average improvement
for classes ranked at top (bottom) 50% in the baseline performance.

task model from the annotation. Therefore, DTL is less effective for this subset of actions because
currently its constraints are also procured from annotation. On the other hand, this shows that DTL
is able to help the model better learn constraints from annotation. We anticipate more performance
improvement with more general constraints that go beyond knowledge in the annotations in future
works.

D Extended Discussion on DTL

Section 3.1 introduced logic operators and briefly introduced their semantics. In Section 3.2, we
introduced the evaluation of those operators in detail. In this section, we extend the discussion on
DTL and answer the following two questions:

1. What is the formal definition to the semantics of DTL operators (cf. Section D.1)?
2. What is the relation between the evaluation of DTL operators related and their semantics

(cf. Section D.2)?

D.1 Semantics of Logic Operators

This section formally defines the semantics of these logic operators, which is largely an extension of
linear temporal logic. It is recommended to compare the semantics defined in Eqn. (A2)-(A9) below

16

with the evaluation defined in Eqn. (3)-(10). Also recall that ψ ∈ Ψ takes the following forms:

ψ ∈ Ψ := True | False | a | ¬ψ1 | (ψ1 ∧ ψ2) | (ψ1 ∨ ψ2) | Xψ1 | Fψ1 | (ψ1Wψ2) | (ψ1Sψ2). (A1)

Before defining the semantics, we first introduce a symbol ω, which is a truth assignment of ψ in L
time steps. ω is an L-long word ω0:L−1 = ω0ω1 . . . ωL−1, where ωt is the set of atomic propositions
that are True at time tb. We use ωt1:t2 to denote a substring of ω from time t1 to time t2 and ωt1: as a
shorthand for ωt1:L−1. ωt: |= ψ means ωt: satisfies ψ under the semantics of Ψ.

Now we start to define the semantics of Ψ. The semantics of constants are straight-forward:

ωt: |= True, ωt: ̸|= False, ωt: |= a iff. a ∈ ωt (A2)

which states that any truth assignment satisfies ψ if ψ = True, and no truth assignment will satisfy ψ
if ψ = False. If ψ = a, then a satisfying assignment must assign True to a (make a occur) at time 0.

For common propositional logic operators ¬ (NEGATION), ∧ (AND) and ∨ (OR), we define their
semantics as

ωt: |= ¬ψ1 iff. ωt: ̸|= ψ1, (A3)
ωt: |= ψ1 ∧ ψ2 iff. ωt: |= ψ1 and ωt: |= ψ2, (A4)
ωt: |= ψ1 ∨ ψ2 iff. ωt: |= ψ1 or ωt: |= ψ2, (A5)

where ψ1, ψ2 ∈ Ψ.

Finally, we define the semantics for modal operators X,F,W, and S:

ωt: |= Xψ1 iff. ωt+1: |= ψ1, (A6)
ωt: |= Fψ1 iff. ∃t ≤ t1 < L s.t. ωt1: |= ψ1, (A7)
ωt: |= (ψ1Wψ2) iff. ∃t ≤ t2 < L s.t. ωt2: |= ψ2 and ∀t ≤ t1 < t2, ωt1: |= ψ1,

or ∀t ≤ t2 < L, ωt2: ̸|= ψ2, ωt: |= ψ1,
(A8)

ωt: |= (ψ1Sψ2) iff. ∃t ≤ t2 < L s.t. ωt2: |= ψ2 and ∀t2 ≤ t1 < L, ωt1: |= ψ1,
or ∀t ≤ t2 < L, ωt2: ̸|= ψ2.

(A9)

Intuitively, X shifts the time to the next time step. F states the necessity of ψ1. Both W and S state
the possibility of ψ1 during some time intervals specified by the occurrence of ψ2.

D.2 A Proof of Soundness for DTL

Theorem 1 in the main paper states the soundness of DTL: if ft(ψ, ŷ) > 0, then ŷ satisfies the
constraints in formula ψ at time t. In other words, it states that evaluated satisfaction entails semantic
satisfaction. In this section, we provide a sketchy proof for Theorem 1.

This proof starts with a basic assumption, where we formally establish the connection between ŷ and
a truth assignment ω:
Assumption A1. ŷai,t > 0⇔ ai ∈ ωt.

We also have the following assumption that rules out value “0” throughout the evaluation. This is
necessary as −0 = 0 can break the evaluation of logical negation.
Assumption A2. ŷai,t ̸= 0, ∀a ∈ A and 0 ≤ t < L,

Then we can prove the following Theorem A1, which directly leads to Theorem 1.
Theorem A1. With ψ ∈ Ψ, γ →∞: ft(ψ, ŷ) > 0⇔ ωt: |= ψ.

Proof. Let ψ, a, ψ1, ψ2 ∈ Ψ, where a is an atomic proposition. We need to prove Theorem 1 for all
forms in Eqn. (A1). We do this by induction.

Base Case When ψ = a.

ft(ψ, ŷ) > 0
ψ=a⇐==⇒ ft(a, ŷ) > 0

Eqn. (3)⇐=====⇒ ŷa,t > 0
Asm. A1⇐======⇒ a ∈ ωt

Eqn. (A2)⇐======⇒ ωt: |= a
ψ=a⇐==⇒ ωt: |= ψ.

bIn the context of temporal action segmentation, ωt is equivalent to the set of action that occurs at time t.

17

Therefore the base case is true.

Inductive Step Inductive Hypothesis (I.H.): ft(ψ, ŷ) > 0⇔ ωt: |= ψ for ψ = ψ1 and ψ = ψ2.

Case 1: ψ = ¬ψ1.

• If ft(ψ, ŷ) > 0:

ft(ψ, ŷ) > 0
ψ=¬ψ1
=====⇒ ft(¬ψ1, ŷ) > 0

Eqn. (4)
======⇒ −ft(ψ1, ŷ) > 0

=⇒ ft(ψ1, ŷ) < 0
I.H.
==⇒ ωt: ̸|= ψ1

Eqn. (A3)
=======⇒ ωt: |= ¬ψ1

ψ=¬ψ1
=====⇒ ωt: |= ψ.

• If ωt: |= ψ:

ωt: |= ψ
ψ=¬ψ1
=====⇒ ωt: |= ¬ψ1

Eqn. (A3)
=======⇒ ωt: ̸|= ψ1

I.H. and Asm. A2
===========⇒ ft(ψ1, ŷ) < 0

=⇒ −ft(ψ1, ŷ) > 0
Eqn. (4)
======⇒ ft(¬ψ1, ŷ) > 0

ψ=¬ψ1
=====⇒ ft(ψ, ŷ) > 0.

Case 2: ψ = (ψ1 ∧ ψ2).

ft(ψ, ŷ) > 0
ψ=(ψ1∧ψ2)⇐=======⇒ ft(ψ1 ∧ ψ2, ŷ) > 0

Eqn. (5)⇐=====⇒ min{ft(ψ1, ŷ), ft(ψ2, ŷ)} > 0

⇐⇒ ft(ψ1, ŷ) > 0 and ft(ψ2, ŷ) > 0
I.H.⇐=⇒ ωt: |= ψ1 and ωt: |= ψ2

Eqn. (A4)⇐======⇒ ωt: |= (ψ1 ∧ ψ2)
ψ=(ψ1∧ψ2)⇐=======⇒ ωt: |= ψ.

Case 3: ψ = (ψ1 ∨ ψ2). The proof is similar to Case 2.

Case 4: ψ = Xψ1.

ft(ψ, ŷ) > 0
ψ=Xψ1⇐====⇒ ft(Xψ1, ŷ) > 0

Eqn. (7)⇐=====⇒ ft+1(ψ1, ŷ) > 0

I.H.⇐=⇒ ωt+1: |= ψ1
Eqn. (A6)⇐======⇒ ωt: |= Xψ1

ψ=Xψ1⇐====⇒ ωt: |= ψ.

Case 5: ψ = Fψ1.

ft(ψ, ŷ) > 0
ψ=Fψ1⇐===⇒ ft(Fψ1, ŷ) > 0

Eqn. (8)⇐=====⇒ max{ft:L−1(ψ1, ŷ)} > 0

⇐⇒ ∃t ≤ t1 < L s.t. ft1(ψ1, ŷ) > 0
I.H.⇐=⇒ ωt1: |= ψ1

Eqn. (A7)⇐======⇒ ωt: |= Fψ1
ψ=Fψ1⇐===⇒ ωt: |= ψ.

Case 6: ψ = (ψ1Wψ2).

• If ∃k ∈ [t, L) s.t. fk(ψ2, ŷ) > 0:

ft(ψ, ŷ) > 0
ψ=(ψ1Wψ2)⇐=======⇒ ft(ψ1Wψ2, ŷ) > 0

Eqn. (9)⇐=====⇒ min{fk′:t(ψ1, ŷ) > 0}, and k′ ∈ [t, L) is the min. integer s.t. fk′(ψ2, ŷ) > 0

⇐⇒ ∃t1 ∈ [t, k] s.t. ft1(ψ1, ŷ) > 0 and ∃k ∈ [t, L) s.t. fk(ψ2, ŷ) > 0

I.H.⇐=⇒ ∃t1 ∈ [t, k] s.t. ωt1: |= ψ1 and ∃k ∈ [t, L) s.t. ωk: |= ψ2

Eqn. (A8)⇐======⇒ ωt: |= (ψ1Wψ2)
ψ=(ψ1Wψ2)⇐=======⇒ ωt: |= ψ.

18

• If ∀k ∈ [t, L), fk(ψ2, ŷ) < 0: This is a special case for W (and S as well). When this happens, we
directly set ft(ψ, ŷ) = minγ(ft:L−1(ψ1, ŷ)). Then ft(ψ, ŷ) > 0⇔ ωt: |= ψ1 ⇔ ωt: |= (ψ1Wψ2).

Case 7: ψ = (ψ1Sψ2). The proof is similar to Case 6.

E Constraints

This section provides a quick view of the constraints used in our experiment. We first explain how
constraints are collected and then provide samples for different types of constraints collected for the
two datasets used in our experiment.

E.1 Collecting Constraints

The constraints are automatically generated from the existing annotations of datasets. Algorithm A1
shows how statistics about co-occurrences between actions can be collected. Then Algorithm A2
uses those statistics to generate the four types of constraints discussed in Section 3.3.

Algorithm A1: Algorithm to collect the co-occurrence statistics from dataset annotation.
Input: Set of samplesM = {m1,m2, . . . ,mM}, where mi = [y0, y2, ..., yL−1] and yi ∈ A is

the index of one of the N actions.
▷ B[ai, aj] is the frequency of ai occurring before aj
▷ P [ai, aj] is the frequency of ai occurring after aj
▷ J [ai, aj] is the number of videos where ai occurs with aj
▷ C[ai, aj] is the number of videos where ai occurs

1 B,P ,J ← zero matrices of size N ×N ;
2 C ← zero vector of size N ;
3 foreach m ∈M do
4 occur_flags← zero vector of size N ;
5 co_occur_flags← zero matrix of size N ×N ;
6 y0, y1, ..., yL−1← annotation of m;
7 foreach t ∈ 0, 1, . . . , L− 1 do
8 if occur_flags[yt] == 0 then
9 C[yt]← C[yt] + 1 ;

10 occur_flags[yt]← 1;
11 foreach u ∈ {0, 1, . . . , t} do
12 B[yu, yt]← B[yu, yt] + 1;
13 if co_occur_flags[yt, yu] == 0 then
14 J [yu, yt]← J [yu, yt] + 1 ;
15 co_occur_flags[yu, yt] = 1;

16 foreach u ∈ {t+ 1, t+ 2, . . . , L− 1} do
17 P [yu, yt]← P [yu, yt] + 1;
18 if co_occur_flags[yt, yu] == 0 then
19 J [yu, yt]← J [yu, yt] + 1 ;
20 co_occur_flags[yu, yt] = 1;

21 return {B,P ,J ,C};

E.2 Samples of Constraints

For clarity, we show 10 entries for each type of constraint.

E.2.1 Breakfast

Breakfast contains 48 actions for ten different activities about breakfast preparation. Each video
contains a single activity, which could be making coffee, cereal, tea, fried egg, pancake, sandwich,

19

Algorithm A2: Algorithm to generate the constraints from the collected statistics.
Input: Statistics {B,P ,J ,C} collected by Algorithm A1.
▷ B[ai, aj] is the frequency of ai occurring before aj
▷ P [ai, aj] is the frequency of ai occurring after aj
▷ J [ai, aj] is the number of videos where ai occurs with aj
▷ C[ai, aj] is the number of videos where ai occurs

1 Constraints← {} ;
▷ Empty set of rules

2 foreach i ∈ {0, 1, . . . , N − 1} do
3 foreach j ∈ {0, 1, . . . , N − 1} do
4 if i ̸= j and B[i, j] == 0 then

▷ action i is “backward dependent” on j
5 Constraints← append_BD(i, j) ;
6 if J [i, j] > 0 and P [i, j] == 0 then

▷ action j “forward cancels” j
7 Constraints← append_FC(j, i) ;
8 if i ̸= j and J [i, j]/C[j] == 1 then

▷ action j implies i
9 Constraints← append_Ip(j, i) ;

10 if i ̸= j and J [i, j] == 0 then
▷ action i and j is exclusive

11 Constraints← append_Ex(i, j) ;

12 return Constraints;

juice, etc. Breakfast is therefore different from 50Salads because its actions could be mutually
exclusive. Below is a list of actions:

• take_cup

• pour_coffee

• pour_milk

• pour_sugar

• stir_coffee

• spoon_sugar

• add_teabag

• pour_water

• stir_tea

• cut_bun

• smear_butter

• put_toppingOnTop

• put_bunTogether

• take_plate

• take_knife

• take_butter

• take_topping

• cut_orange

• squeeze_orange

• take_glass

• pour_juice

• take_squeezer

• take_bowl

• pour_cereals

• stir_cereals

• spoon_powder

• stir_milk

• pour_oil

• take_eggs

• crack_egg

• add_saltnpepper

• fry_egg

• put_egg2plate

• butter_pan

• cut_fruit

• put_fruit2bowl

• peel_fruit

• stir_fruit

• stirfry_egg

• stir_egg

• pour_egg2pan

• spoon_flour

• stir_dough

• pour_dough2pan

• fry_pancake

• put_pancake2plate

• pour_flour

• SIL

Backward Dependency The following shows a subset of the back dependency constraints, where
BD(ai, aj) = (Fai ∧ Faj)→ (¬aiWaj) reads “action ai is backward dependent on action aj .”

20

• BD(pour_dough2pan, spoon_flour),
• BD(squeeze_orange, cut_orange),
• BD(add_saltnpepper, take_bowl),
• BD(put_egg2plate, pour_egg2pan),
• BD(stir_coffee, pour_coffee),

• BD(butter_pan, take_eggs),
• BD(pour_dough2pan, butter_pan),
• BD(stir_tea, take_cup),
• BD(pour_milk, pour_coffee),
• BD(pour_juice, take_plate).

Forward Cancellation The following shows a subset of the forward cancellation constraints, where
FC(ai, aj) = (Fai ∧ Faj)→ (¬ajSai) reads “action ai cancels the future occurrence of aj .”

• FC(pour_dough2pan, pour_flour),
• FC(take_squeezer, take_knife),
• FC(fry_pancake, pour_dough2pan),
• FC(put_buntogether, take_topping),
• FC(pour_dough2pan, take_bowl),

• FC(put_toppingontop, cut_bun),
• FC(stir_fruit, peel_fruit),
• FC(pour_milk, pour_coffee),
• FC(put_buntogether, take_knife),
• FC(stir_coffee, take_cup).

Implication The following shows a subset of the implication constraints, where Ip(ai, aj) =
Fai → Faj reads “action ai implies the occurrence of aj .”

• Ip(fry_pancake, pour_dough2pan),
• Ip(pour_flour, stir_dough),
• Ip(butter_pan, crack_egg),
• Ip(stir_dough, pour_milk),
• Ip(pour_cereals, pour_milk),

• Ip(add_teabag, pour_water),
• Ip(spoon_powder, pour_milk),
• Ip(take_topping, cut_bun),
• Ip(take_butter, smear_butter),
• Ip(stirfry_egg, crack_egg).

Exclusivity The following shows a subset of the exclusivity constraints, where Ex(ai, aj) =
Fai → ¬Faj reads “if action ai occurs, action aj will not occur in the same video”.

• Ex(butter_pan, cut_bun),
• Ex(smear_butter, spoon_sugar),
• Ex(take_butter, pour_sugar),
• Ex(stir_cereals, cut_bun),
• Ex(add_teabag, take_butter),

• Ex(take_butter, stir_cereals),
• Ex(put_fruit2bowl, put_pancake2plate),
• Ex(put_fruit2bowl, pour_sugar),
• Ex(cut_bun, spoon_sugar),
• Ex(spoon_flour, add_teabag).

E.2.2 50Salads

50Salads contains 19 actions for a single activity “making salad”:

• cut_tomato

• place_tomato_into_bowl

• cut_cheese

• place_cheese_into_bowl

• cut_lettuce

• place_lettuce_into_bowl

• add_salt

• add_vinegar

• add_oil

• add_pepper

• mix_dressing

• peel_cucumber

• cut_cucumber

• place_cucumber_into_bowl

• add_dressing

• mix_ingredients

• serve_salad_onto_plate

• action_start

• action_end

Backward Dependency

21

• BD(serve_salad_onto_plate, peel_cucumber),
• BD(serve_salad_onto_plate,

place_tomato_into_bowl),
• BD(add_dressing, cut_tomato),
• BD(serve_salad_onto_plate, cut_cucumber),
• BD(serve_salad_onto_plate, cut_lettuce),

• BD(add_dressing, add_pepper),
• BD(serve_salad_onto_plate, mix_ingredients),
• BD(serve_salad_onto_plate, add_salt),
• BD(serve_salad_onto_plate,

place_cucumber_into_bowl),
• BD(add_dressing, cut_cheese).

Forward Cancellation

• FC(add_dressing, peel_cucumber),

• FC(serve_salad_onto_plate, add_vinegar),

• FC(place_cheese_into_bowl, cut_cheese),

• FC(mix_ingredients, cut_cheese),

• FC(add_dressing, add_oil),

• FC(place_cucumber_into_bowl,
peel_cucumber),

• FC(serve_salad_onto_plate, mix_ingredients),
• FC(serve_salad_onto_plate, cut_cheese),
• FC(serve_salad_onto_plate, peel_cucumber),
• FC(add_dressing, place_cucumber_into_bowl).

Implication

• Ip(place_cheese_into_bowl, action_end),
• Ip(cut_cheese, cut_lettuce),
• Ip(add_oil, place_tomato_into_bowl),
• Ip(place_tomato_into_bowl, cut_tomato),
• Ip(mix_dressing, cut_cheese),

• Ip(add_salt, add_pepper),
• Ip(place_lettuce_into_bowl, add_oil),
• Ip(add_salt, place_tomato_into_bowl),
• Ip(place_tomato_into_bowl, action_end),
• Ip(add_oil, cut_tomato).

Exclusivity There are no exclusivity constraints because all actions are from the same activity.

F Action Detection on Charades

Table A2: Performances on the
Charades dataset.

Task Model mAP (%)

GRU
Base 20.7
Base + DTL 21.6
Gain 0.9

TConv
Base 17.2
Base + DTL 18.3
Gain 1.1

One might be curious about whether DTL works without the
“one-action-per-frame” assumption used in the main paper. In
fact, this assumption emerges from the definition of the action
segmentation task rather than DTL itself.

To examine the applicability of DTL without this assumption,
we assess DTL using the action detection task on the Cha-
rades [49] dataset. Different from the datasets used in the action
segmentation task, every frame in Charades can be labeled with
zero or multiple actions. The dataset contains 9,848 videos
with 157 frame-level action categories. Each video spans about
30 seconds and contains six actions on average. Following the
same procedure introduced in Section 3.3, we collected a total
of 9,668 constraints. We sampled 2,000 constraints for this experiment.

Following the procedures in [44], we use I3D [4] pretrained on Kinetics-400 to extract the frame-level
features and mean average precision (mAP) as the performance metric. DTL is assessed using two
task models, namely, a GRU with 512 hidden units (abbreviated as GRU), and a three-layer temporal
convolutional network (abbreviated as TConv). As shown in Table A2, improvements are observed
for both task models when they are trained with DTL. Note that since we aim to show that DTL works
across different tasks, we do not use constraints unique to the action detection task. For example,
we do not collect constraints about co-occurrences of actions in the same frame. This means further
improvement is possible when those absent constraints are collected and enforced. The definition of
a more comprehensive set of constraints and their applications in various action analysis tasks are left
as future works.

22

	Introduction
	Related Works
	Temporal Action Segmentation
	Temporal Logic and Action Analysis
	Logic Constraints on Neural Networks

	Method
	Syntax of Formulae
	Formula Evaluator
	Constraints
	Training with Constraints

	Experiments
	Temporal Action Segmentation
	Ablation Study
	Qualitative Results
	Analyzing the Effects of DTL

	Conclusion
	Table of Notations
	Implementation Details
	Class-wise Performances
	Extended Discussion on DTL
	Semantics of Logic Operators
	A Proof of Soundness for DTL

	Constraints
	Collecting Constraints
	Samples of Constraints
	Breakfast
	50Salads

	Action Detection on Charades

